MATHEMATISCH CENTRUM 2e BOERHAAVESTRAAT 49 AMSTERDAM

REKENAFDELING

Leiding: Prof. Dr Ir A. van Wijngaarden

Computation of the Ginzel-Ludwig correction factor K for a three-bladed propeller in a homogenous flow.

bу

The Staff of the Computation Department

Report R 195 B

The Mathematical Centre at Amsterdam, founded the 11th of February 1946, is a non-profit institution aiming at the promotion of pure mathematics and its applications, and is sponsored by the Netherlands Government through the Netherlands Organization for Pure Research (Z.W.O.) and the Central National Council for Applied Scientific Research in the Netherlands (T.N.O.), by the Municipality of Amsterdam and by several industries.

1. On behalf of the Netherlands Ship Model Basin the Ginzel-Ludwig correction factor K[1] was computed for the values $\sigma = 0.2, 0.5, 0.7, 0.9$

$$\lambda = 0.1, 0.2, 0.1, 0.9$$
 $\lambda = 0.1, 0.2, 0.25, 0.4, 1$

with a profile defined by $1/D = 1.66628 \sqrt{1 - x} - 1.63267(1 - x)$ In the computations the values of the Goldsteinfactor $x^{(3)}(x)$, given in report R 195 A [2] were used.

2. Following Ginzel-Ludwig [1] the following formulae were used:

$$\bar{x} = (x^{2} + \lambda^{2})^{\frac{1}{2}}$$

$$\varphi(x) = 2^{-\frac{1}{2}}\bar{x}^{-1} \frac{1}{D}$$

$$\bar{\varphi} = \varphi(2^{-\frac{1}{2}})$$

$$\bar{\varphi}(x) = 2^{-1}\pi(x/\bar{x})^{2}\chi^{(3)}(x)$$

$$\bar{\nabla}_{0} = 2\int_{0}^{1}x \, \nabla_{0}(x)dx$$

$$\bar{\sigma}(x) = 1 + (\sigma - x)\bar{x}^{-1}$$

$$k^{2}(x) = 4 \,\bar{\sigma}(x) \left\{1 + \bar{\sigma}(x)\right\}^{-2}$$

$$f(x) = x \,\varphi(x)$$

$$g(x) = \lambda \,\varphi(x)$$

$$H(x) = \Gamma_{0}(x) \,\varphi^{-1}(x)$$

 $\alpha = \frac{\pi}{2} + \bar{\varphi}$

$$I_{1}(\sigma,\lambda) = \frac{1}{4\pi} \int_{0}^{1} H(x) \frac{\{\sigma f(x) + \lambda g(x)\} - (x-\sigma)\{\sigma f'(x) + \lambda g'(x)\}}{(\lambda^{2} + \sigma^{2})^{\frac{1}{2}} \{(x-\sigma)^{2} + f^{2}(x) + g^{2}(x)\}^{\frac{1}{2}}} dx$$

$$I_{2}(\sigma,\lambda) = -\frac{1}{4\pi} \int_{0}^{1} H'(x) \frac{x\sigma + \lambda^{2}}{\pi^{2}(\lambda^{2} + \sigma^{2})^{\frac{1}{2}}} \left[\frac{1}{1 - \overline{\sigma}(x)} \left\{ E(k) - E(k, \frac{\pi - \psi(x)}{2}) + \frac{\pi^{2}(\lambda^{2} + \sigma^{2})^{\frac{1}{2}}}{2} \right] \right]$$

$$-\frac{k^{2} \sin \varphi(x)}{2(1-k^{2} \cos^{2} \frac{\varphi(x)}{2})^{\frac{1}{2}}} + \frac{1}{1+\overline{\sigma}(x)} \left\{ K(k) - F(k, \frac{\pi - \varphi(x)}{2}) \right\} dx$$

$$I_{3}(\sigma,\lambda) = \frac{1}{4\pi\bar{\varphi}(\sigma^{2}+\lambda^{2})^{\nu_{2}}} \sum_{i=1}^{4} c_{i}$$

$$C_{4} = -\frac{\lambda^{2} \overline{\varphi} \cos \alpha + \sigma^{2} \sin \alpha}{\lambda^{2} \overline{\varphi}^{2} + \sigma^{2} \sin^{2} \alpha} \left\{ \frac{1 + \sigma \cos \alpha}{(\sigma^{2} + 2 \sigma \cos \alpha + 1 + \lambda^{2} \overline{\varphi}^{2})^{\frac{1}{4}}} - \frac{\sigma^{2} \cos \alpha}{(\sigma^{2} + \lambda^{2} \overline{\varphi}^{2})^{\frac{1}{4}}} \right\}$$

$$C_{2} = \frac{\sigma^{2} \sin \beta - \lambda^{2} \overline{\varphi} \cos \beta}{\lambda^{2} \overline{\varphi}^{2} + \sigma^{2} \sin^{2} \beta} \left\{ \frac{1 + \sigma \cos \beta}{(\sigma^{2} + 2 \sigma \cos \beta + 1 + \lambda^{2} \overline{\varphi}^{2})^{\frac{1}{2}}} - \frac{\sigma \cos \beta}{(\sigma^{2} + \lambda^{2} \overline{\varphi}^{2})^{\frac{1}{4}}} \right\}$$

$$C_{3} = \frac{-\lambda^{2} (\sigma + \frac{1}{2}) + \sigma (1 + \frac{1}{4} \sigma)}{\lambda^{2} (\sigma^{2} + \sigma + 1) + (1 + \frac{1}{4} \sigma)^{2}} \left\{ \frac{\frac{1}{4} \cdot 3^{\frac{3}{4}} \sigma + \overline{\varphi} (1 + \lambda^{2})}{[\sigma^{2} + \sigma + 1 + \overline{\varphi}^{2} (1 + \lambda^{2}) - 3^{\frac{3}{4}} \sigma \overline{\varphi}]^{\frac{3}{4}}} + \frac{\frac{1}{4} \cdot 3^{\frac{3}{4}} \sigma - \overline{\varphi} (1 + \lambda^{2})}{[\sigma^{2} + \sigma + 1 + \overline{\varphi}^{2} (1 + \lambda^{2}) + 3^{\frac{3}{4}} \sigma \overline{\varphi}]^{\frac{3}{4}}} \right\}$$

$$C_{4} = \frac{2\lambda^{2} \overline{\varphi}}{\sigma (\sigma^{2} + \lambda^{2} \overline{\varphi}^{2})^{\frac{3}{4}}}$$

where primes denote differentiation with respect to x.

3. Results

•				
	Market Schoolster			1.3238
				.8648
			Control of	.8849
				1,3638
				.658
				,654
				.478

- [1] I. GINZEL, H. LUDWIG: Zur Theorie der Breitblattschraube.

 Deutsche Luftfahrtforschung: Untersuchungen und Mitteilungen Nr. 3097,
 (1944).
- [2] Staff of the Computation Department of the Mathematical Centre, Amsterdam.

 R 195 A: Computation of the Gold-

R 195 A: Computation of the Gold-stein factor x for a three-bladed propeller in a homogenous flow (1956).